Fin efficiency

$$
\eta=\frac{\mathrm{q} \text { actual }}{\mathrm{q} \mathrm{max}}
$$

Applied this equation on case 1

$$
\eta=\frac{(\text { hpkA })^{0.5}\left(\mathrm{~T}^{\circ}-\mathrm{T} \infty\right)}{\mathrm{hpL}\left(\mathrm{~T}^{\circ}-\mathrm{T} \infty\right)}=\frac{1}{\mathrm{~mL}}
$$

For case 2
$\eta=\frac{(h p k A)^{0.5}\left(T^{\circ}-T \infty\right) \tanh (m L)}{h p L\left(T^{\circ}-T \infty\right)}=\frac{\tanh (m L)}{m L}$
The value of η may be found from figure 1 or figure 2
Figure 1 Efficiencies of straight rectangular and triangular fins.

Figure 2 Efficiencies of circumferential fins of rectangular profile.

q max for circumferential fins $=2 \pi \mathrm{~h}\left(\mathrm{r}_{2} \mathrm{c}^{2}-\mathrm{r}_{1}{ }^{2}\right)\left(\mathrm{T}^{\circ}-\mathrm{T} \infty\right)$
q max for rectangular fins $=\mathrm{hp} \mathrm{L} \theta^{\circ}$

Fin performance

In some cases a valid method of evaluating fin performance is to compare the heat transfer with the fin to that which would be obtained without the fin. The ratio of these quantities
$\frac{\mathrm{q} \text { with fin }}{\mathrm{q} \text { without fin }}=\frac{\eta f A f h \theta^{\circ}}{\mathrm{h} \mathrm{Ab} \theta^{\circ}}$
where $A f$ is the total surface area of the fin and $A b$ is the base area.
$\mathrm{Af}=$ Area of fin $\quad \mathrm{Ab}=$ Area of base
The heat ratio become in case 2
$\frac{\mathrm{q} \text { with fin }}{\mathrm{q} \text { without fin }}=\frac{\tanh m l}{\left(\frac{\mathrm{hA}}{\mathrm{kp}}\right)^{0.5}}$
The ratio of heat called fin effectivness

Example:

Aluminum fins 1.5 cm wide and 1.0 mm thick are placed on a 2.5 cm diameter tube to dissipate the heat. The tube surface temperature is $170^{\circ} \mathrm{C}$, and the ambient-fluid temperature is $25^{\circ} \mathrm{C}$. Calculate the heat loss per fin for $\mathrm{h}=130 \mathrm{~W} / \mathrm{m}^{2} \cdot \circ \mathrm{C}$. Assume $\mathrm{k}=200 \mathrm{~W} / \mathrm{m} \cdot \circ \mathrm{C}$ for aluminum.

Solution

$$
\begin{aligned}
& \mathrm{Lc}=\mathrm{L}+\mathrm{t} / 2=1.5+0.05=1.55 \mathrm{~cm} \\
& \mathrm{r} 1=2.5 / 2=1.25 \mathrm{~cm} \\
& \mathrm{r} 2 \mathrm{c}=\mathrm{r} 1+\mathrm{Lc}=1.25+1.55=2.80 \mathrm{~cm} \\
& r 2 c / r 1=2.80 / 1.25=2.24 \\
& \mathrm{Am}=\mathrm{t}^{*} \mathrm{Lc}=(0.001)(1.55)\left(10^{-2}\right)=1.55 \times 10^{-5} \mathrm{~m}^{2} \\
& \mathrm{Lc}^{3 / 2}\left(\frac{\mathrm{~h}}{\mathrm{k} \mathrm{Am}}\right)^{1 / 2}=(0.0155)^{3 / 2}\left(\frac{130}{200 * 1.55 \times 10-5}\right)^{1 / 2}=0.369
\end{aligned}
$$

From Figure 2, $\quad \eta f=82$ percent
$\mathrm{q} \max =2 \pi\left(\mathrm{r}_{2} \mathrm{c}^{2}-\mathrm{r}_{1}{ }^{2}\right)(\mathrm{h})\left(\mathrm{T}^{\circ}-\mathrm{T} \infty\right)$
$=2 \pi\left(2.8^{2}-1.25^{2}\right)\left(10^{-4}\right)(130)(170-25)=74.35 \mathrm{~W}$

$$
\eta=\frac{q \text { actual }}{q \text { max }} \quad \text { qactual }=(0.82) *(74.35)=60.97 \mathrm{~W}
$$

Example:

Calculate the heat loss from 250 rectangular thin fins of uniform cross section of thickness 0.5 mm and height 50 mm on (1*1)m surface ,separated by a distance of 4 mm . The heat transfer coefficient is $30 \mathrm{w} / \mathrm{m}^{2}$ ${ }^{\circ} \mathrm{C}$ and the thermal conductivity is $200 \mathrm{~W} / \mathrm{m}{ }^{\circ} \mathrm{C}$.

Solution:

q with fins $=$ no. of fin $* q$ fin $+q$ between fins

q fin $=\mathrm{k} \mathrm{A} \mathrm{m} \theta^{\circ} \tanh (\mathrm{mLc})$
$\mathrm{Lc}=\mathrm{L}+\mathrm{t} / 2=5+0.025=5.025 \mathrm{~cm}$
$\mathrm{m}=\sqrt{\frac{2 h}{k t}}=\sqrt{\frac{2 * 30}{200 * 0.5 * 10^{-3}}}=24.5$
$\mathrm{m} \operatorname{Lc}=24.5 * 5.025 * 10^{-2}=1.23$
q fin $=200 * 24.5 *\left(1 * 0.5 * 10^{-3}\right) * \theta^{\circ} * \tanh (1.23)=2.06 \theta^{\circ}$
q between fin $=\mathrm{h} \mathrm{A}_{\text {between fins }} \theta^{\circ}$
$\mathrm{A}_{\text {between fins }}=1\left(1-\left(0.5 * 10^{-3} * 1 * 250\right)\right)=0.875 \mathrm{~m}^{2}$
q between fins $=30 * 0.875^{*} \theta^{\circ}=26.25 \theta^{\circ}$
q with fins $=250 * 2.06 \theta^{\circ}+26.25 \theta^{\circ}=541.25 \theta^{\circ}$
*Calculate the percentage of increase of heat transfer rate due to addition of number of rectangular fins, if the heat transfer coefficient is $40 \mathrm{w} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$ before addition the fins
q with fins $=541.25 \theta^{\circ}$
q without fins $=\mathrm{h} \operatorname{Ab} \theta^{\circ}=40 *\left(1^{*} 1\right)^{*} \theta^{\circ}=40 \theta^{\circ}$
$\frac{\mathrm{q} \text { with fins }}{\mathrm{q} \text { without fins }}=\frac{541.25 \theta^{\circ}}{40 \theta^{\circ}}=13.53$

